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Background

● Deep learning recommendation models (DLRMs) used in many companies 
and are single largest AI application in terms of infrastructure demand in data 
centers

● Conventional deep neural networks (DNNs) mainly compute-intensive, but 
DLRMs have both compute-intensive components and up to thousands of 
data-intensive embedding operators

● DNN training typically uses data, model or pipeline parallelism → not optimal 
for DLRMs

● Focus on offline training



Background: Embedding Operators

● Each categorical feature has a 
dedicated embedding operator

● Takes multi-hot vector input, 
retrieves rows from embedding 
table, outputs pooled embedding 
vector



Background: Parallelization Strategies

● Data parallelism → dense  
parameters from MLP modules 
are duplicated

● Model parallelism → 
parameters from embedding 
tables are partitioned



Motivation

● Need to be able to support DLRMs with trillions of parameters, terabytes in 
size

○ PS-based systems cannot scale to this size → model accuracy 
decreases due to increased asynchronous updates

● Need:

○ A high-performance synchronous training solution

○ Memory-efficient computation

○ Scales while preserving accuracy of model



Related Work: Memory Optimization and Sharding

● DeepSpeed → fully shards model parameters, gradients and optimizer states 
across all nodes

● GShard → trains massive translation model with MoE, sharded across 
accelerators for tensor-level parallelization

● FlexFlow → automatic search to discover best operator parallelization 
strategy

❌   General systems, not designed for highly sparse recommendation models



Related Work: Systems for Sparse Recommendation 
Models
● XDL → hierarchical sample compression, workflow pipelining, zero copy and 

CPU binding

● Kraken (online training) → decoupled key-value fetching and embedding, 
codesigned cache eviction policy, memory efficient optimizers, non-colocated 
deployment model

● Work done in CPU-based DLRM training

● Baidu’s AIBox → fits training into single node; pipelines network, disk and 
CPU/GPU tasks, hashing schemes



Related Work: Communication Performance

● BytePS and ByteScheduler → utilizes idle CPU and network resources with 
better communication scheduling

● SwitchML and ATP → utilizes programmable network switches for in-network 
aggregation in datacenter environments, cuts down cross-rack data transfer

● Exploiting datacenter network locality

● Utilizing quantization schemes to reduce communication volume



Overview

● Data parallelism → 
training DNN layers

● 4D parallelism → training 
memory-intensive 
embedding operators

● ZionEx → hardware 
platform to optimize 
inter-node 
communications

Neo



4D Parallelism: Table-Wise Parallelism

● Partitioning and parallelizing multiple 
embedding tables across GPUs

❌   Cannot handle large embedding tables 
that exceed the memory capacity of a single 
GPU

❌   Achieved load balance often limited due to 
skew in table sizes

✅   Requires no handling of embedding table 
input indices or pooled embedding results



4D Parallelism: Row-Wise Parallelism

● Parallelizing by rows and assigning 
different table shards to different trainers

● Inputs bucketized
● Partial results need to be reduced then 

scattered

❌   Communication cost scales linearly with 
the number of trainers

✅   Handles large tables well and leads to 
better load balance



4D Parallelism: Column-Wise Parallelism

● Partitioning the embedding tables along 
the embedding dimensions

● Input indices duplicated

❌   Only works well with large embedding 
dimensions, increases payload for input indices

❌   Row-wise updates introduce additional 
parameters, one for each shard of the row

✅   Enables finer-grained parallelism



4D Parallelism: Data Parallelism

● Treating embedding tables as dense 
parameters and replicating them across 
all trainers

● Works best on small embedding tables 
with fewer rows

✅   No communication in the forward pass

⚠   Trade-off: AlltoAll of pooled embeddings 
v.s. AllReduce on entire table



Parallelization Algorithms

● Neo allows users to mix and match parallelization primitives

● Supports partitioning embedding operators in a recursive manner

○ E.g. “table-wise then row-wise” scheme assigns a set of tables to a 
particular node, then within that node, tables partitioned row-wise

● Can explore placement algorithms for each parallelization scheme by 
minimizing “cost function”

○ combination of communication overhead and load imbalance between 
the trainers



Pipelining

● When batch 𝑖 is being evaluated, the same 
GPUs start receiving and distributing batch 
𝑖 + 1 using a separate stream

● Overlap input AlltoAll of batch 𝑖 + 1 with 
forward propagation of top MLP of batch 𝑖

● Overlap pooled embedding AlltoAll with 
forward propagation of bottom MLP



Embedding Optimizations

Two main challenges when optimizing runtime performance of DLRM’s embedding 
operators:

1. Forward processing, backward propagation, and gradient updates for 
embedding operators require launching thousands of GPU kernels

2. Some embedding operators may include up to billions of parameters and do 
not fit on the device memory of a single GPU



Embedding Optimizations

● Hybrid kernel fusion

● 4D parallelism

● Multi-level memory hierarchy

● ZionEx



Embedding Optimizations: Hybrid Kernel Fusion

● Fuses multiple 
embedding lookups on 
the same GPU into a 
single CUDA kernel

● Reduces overhead of 
launching multiple 
CUDA kernels (for each 
embedding lookup) on 
GPUs



Embedding Optimizations: Hybrid Kernel Fusion

● Fuses the backward 
pass with the sparse 
optimizer

⚠   Avoid race conditions!

Gradient sorting: 
updates to each row 

processed by a single 
CUDA thread block

Gradient aggregation: applied 
within each CUDA thread block 

using faster, smaller GPU 
shared memory



Embedding Optimizations: Hybrid Kernel Fusion

● Avoids allocating GPU device memory for embedding gradients

● Intermediate embedding gradients stored in GPU shared memory (not device 
memory)

● Improves overall performance of embedding computations by up to 7× 
compared to native implementation



Embedding Optimizations: Managing Memory Hierarchy

● DLRMs with up to trillions of parameters → embedding tables are too large to 
entirely fit on a single GPU

HBM (High Bandwidth Memory)

DRAM (Dynamic 
Random-Access Memory)

SSDs (Solid-State Drives)

for very fast, frequently 
accessed data.

for moderately fast, less 
frequently accessed data.

for large, infrequently 
accessed data storage.



Embedding Optimizations: Managing Memory Hierarchy

● Faster memory serves as a software cache of the subsequent layer

● System also scales out to multiple nodes to increase aggregate capacity

● Useful for online training of DLRMs

○ Lower throughput requirements



Embedding Optimizations: Managing Memory Hierarchy

● Customized 32-way set-associative software cache using least recently used 
(LRU) or least frequently used (LFU) cache replacement policies

● Compression techniques

○ Row-wise sparse optimizer

○ Low/mixed-precision training → high-precision cache backed by low 
precision embedding tables

○ Advanced factorization techniques



Zion to ZionEX: Evolution of Hardware Platform (1)

Key improvements: Inter-node network

● TCP (100G regular NIC) 
-> RDMA over RoCE (200G RDMA NIC)

○ Significantly less network stack overhead.
○ Offload network stack from CPU to RDMA NIC.
○ Use dedicated inter-node connectivity.



ZionEX: A Separate Backend Network

● Utilize multi-node low latency 
transport with direct data 
placement to serve AlltoAll and 
AllReduce collectives

Ingestion to Regular 
NICs attached to CPUs

✅   Scalability



Zion to ZionEX: Evolution of Hardware Platform (2)

data 
ingestion

tensors / gradients

Key improvements: Inter-/intra-node network

● TCP (100G regular NIC) 
-> RDMA over RoCE (200G RDMA NIC)

○ Significantly less network stack overhead.
○ Offload network stack from CPU to RDMA NIC.
○ Use dedicated inter-node connectivity.

● Frequent CPU-GPU communication -> 
GPUDirect / RDMA

○ Heterogeneous on CPUs/GPUs -> entirely on 
GPUs.

○ Bypass CPUs: require less CPUs (8->4)
○ Better scalability.

data ingestion 
+

tensors / gradients

NVLINK



OAM and Accelerator Interconnect Topology

● OAM: OCP (open compute project) Accelerator Module
○ Define vendor-agnostic common form factor

● Define superset physical topology
● RDMA and NVLINK

✅   Compatibility

✅   High performance



Zion to ZionEX: Evolution of Hardware Platform (3)

Zion ZionEX

Inter-node TCP RDMA

CPU-GPU 
comm. Heavy Light

Complexity High due to 
heterogeneity Low

Scalability Low High 

Throughput 63 TFLOPS/s 766 TFLOPS/s

✅   More than 10x improvement, latency reduction can also be expected.



Implementation: Data Ingestion

● Co-designed the data 
pre-processing module to use a 
combined format: lengths rather 
than offsets are used.

● Inputs to different embedding tables 
are simply concatenated.

❌ Significant latency overhead if unoptimized.
❌ CPU<->GPU transfer due to input tensors.



Implementation: Data Ingestion

● Co-designed the data 
pre-processing module to use a 
combined format: lengths rather 
than offsets are used.

● Inputs to different embedding tables 
are simply concatenated.

❌ Significant latency overhead if unoptimized.
❌ CPU<->GPU transfer due to input tensors.

✅ No additional layout transformations.
✅ Consolidate small transfers.



Implementation: Communication primitives

● Nvidia’s Collective Communication Library (NCCL)
○ Extend PyTorch NCCL process group to support Alltoall/Alltoallv collective with NCCL 

Send/Recv primitives



Evaluation Setup

● 16 ZionEX nodes
● On each node

○ 8 NVIDIA A100 GPUs with 320 GB HBM (12.4 TB/s)
○ 4-socket CPU with 1.5TB memory (320 GB/s)
○ Each GPU has a dedicated 200 Gbps RDMA NIC



End-to-End Training: Tested Models

● Model-A: large and complex DLRMs 
-> computation and communication 
intensive.

● Model-F: small scale DLRM, has a 
single massive table that cannot fit in 
single GPU’s memory.

● Model-I: moderate scale DLRMs -> 
memory intensive and high 
embedding pooling sizes.



Training Quality (Model-A)

● Baseline: small batch (~150) 
asynchronous training on a distributed 
CPU platform (45 parameter servers 
and 15 trainers)
☹ Unable to scale further

● Neo uses large (64K) batch size and 
synchronous training.

✅   Training on ZionEX provides on-par or better model quality
✅   Neo achieves 1.2MQPS -> 40x speedup
✅   ZionEX can further scale to more than 16 nodes.



Scaling Performance

● Using up to 16 ZionEX nodes, while keeping the per-GPU batch size 
constant.

Scaling efficiency:
● Model-A: 50%
● Model-I: 75%



What Factors Limit the Scaling Efficiency?

● Model-A has larger fully exposed All-to-All latency.
● More embedding tables -> larger All-to-All payload size -> consumes more 

bandwidth -> interferences
● Harder to balance the embedding computations and communications at the 

same time



What Factors Help the Scaling Efficiency?

● CPU-GPU (HtoD) transfer is completely hidden.
● The exposed communication latency is much lower than the sum of All2ALL 

and AllReduce latency.



Training Throughput Optimizations

● Throughput within 15% theoretical 
estimates with roofline modeling.

Better load balance due to embedding table partition

Reduce model size and improve load balancing

Reduce communication volume and address the 
increased AlltoAll latency

Saturate GPUs and communication bandwidth better



Model Capacity Limitation Study

● Model-F: 
○ 12T parameters requires 96TB memory > total memory on 16 nodes.
○ A few massive embedding tables require multi-node memory.

● Use FP16 precision on embedding tables => 96TB → 24TB
● Apply row-wise sparse AdaGrad optimizer to embedding tables => distribute 

tables to multiple node.



Strength and Weakness

● Strength
○ Achieve significant performance improvement (upto 40x speedup).
○ Neo and ZionEX together improve the scalability of DLRMs training.
○ Good flexibility and compatibility.
○ A practical solution at data-center scale.

● Weakness
○ Communication primitives are not super clearly stated in the paper (e.g. one-sided/two-sided 

RDMA).
○ Scalability to thousands of ZionEX nodes is still doutable.
○ Evaluations only on three representative models => would be better to evaluate more models.



Conclusion

● SW/HW co-design solution that enables training models with trillions of 
parameters.

● Impressive performance improvement: 40× faster total training time for 
production recommendation models.

● Neo with novel software optimizations: 4D parallelism, embedding kernels, 
hybrid kernel fusion, hierarchical memory management.

● ZionEX enhances the scalability of training cluster and provides 10x 
performance improvements.

● Successfully deployed in real production environment.



Discussions

● As model size keeps growing, communication can further dominate the 
training time. How to further optimize the communication?

○ RDMA/NVLINK
○ Direct data placement
○ Customized data format
○ Quantization and compression (loss-less), sending only deltas
○ Multi-path data routing, programmable network switches

● Power budget
○ Customized hardware can definitely help reduce power consumption
○ Flexibility to accommodate workload changes is also critical

● Use SmartNIC to coordinate intra-node load balancing


